Genotyping-by-Sequencing and Its Exploitation for Forage and Cool-Season Grain Legume Breeding
نویسندگان
چکیده
Genotyping-by-Sequencing (GBS) may drastically reduce genotyping costs compared with single nucleotide polymorphism (SNP) array platforms. However, it may require optimization for specific crops to maximize the number of available markers. Exploiting GBS-generated markers may require optimization, too (e.g., to cope with missing data). This study aimed (i) to compare elements of GBS protocols on legume species that differ for genome size, ploidy, and breeding system, and (ii) to show successful applications and challenges of GBS data on legume species. Preliminary work on alfalfa and Medicago truncatula suggested the greater interest of ApeKI over PstI:MspI DNA digestion. We compared KAPA and NEB Taq polymerases in combination with primer extensions that were progressively more selective on restriction sites, and found greater number of polymorphic SNP loci in pea, white lupin and diploid alfalfa when adopting KAPA with a non-selective primer. This protocol displayed a slight advantage also for tetraploid alfalfa (where SNP calling requires higher read depth). KAPA offered the further advantage of more uniform amplification than NEB over fragment sizes and GC contents. The number of GBS-generated polymorphic markers exceeded 6,500 in two tetraploid alfalfa reference populations and a world collection of lupin genotypes, and 2,000 in different sets of pea or lupin recombinant inbred lines. The predictive ability of GBS-based genomic selection was influenced by the genotype missing data threshold and imputation, as well as by the genomic selection model, with the best model depending on traits and data sets. We devised a simple method for comparing phenotypic vs. genomic selection in terms of predicted yield gain per year for same evaluation costs, whose application to preliminary data for alfalfa and pea in a hypothetical selection scenario for each crop indicated a distinct advantage of genomic selection.
منابع مشابه
Mechanisms of drought stress tolerance in cool season grasses
Drought stress is one of the most limiting abiotic stresses affecting growth, production and survival of plants in many areas of the world, and is expected to intensify considering the trend of climate change. Grass species are important for the sustainability of agricultural systems, forage resources for animal farming and landscapes. Grass species adapt to water deficit by different morpholog...
متن کاملCowpea, a Multifunctional Legume
Cowpea [Vigna unguiculata (L.) Walp.] is an important warm-season legume grown primarily in the semi-arid tropics. The majority of cowpea is grown by subsistence farmers in west and central sub-Saharan Africa, where its grain and stover are highly valued for food and forage. Despite its economic and social importance in developing parts of the world, cowpea has received relatively little attent...
متن کاملGenotyping-by-sequencing data of 272 crested wheatgrass (Agropyron cristatum) genotypes
Crested wheatgrass [Agropyron cristatum L. (Gaertn.)] is an important cool-season forage grass widely used for early spring grazing. However, the genomic resources for this non-model plant are still lacking. Our goal was to generate the first set of next generation sequencing data using the genotyping-by-sequencing technique. A total of 272 crested wheatgrass plants representing seven breeding ...
متن کاملRed clover (Trifolium pratense L.) draft genome provides a platform for trait improvement
Red clover (Trifolium pratense L.) is a globally significant forage legume in pastoral livestock farming systems. It is an attractive component of grassland farming, because of its high yield and protein content, nutritional value and ability to fix atmospheric nitrogen. Enhancing its role further in sustainable agriculture requires genetic improvement of persistency, disease resistance, and to...
متن کاملToward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses
Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017